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Abstract~Buckling, postbuckling, nonlinear vibration and parametric resonance of thick circular
cylindrical shells under axial compression are analyzed in this paper. The theory developed is based
on a nonlinear and non-shallow thick shell theory, with its final equations involving two unknowns,
the circumferential displacement v and the radial displacement w. The shell wall is cross-ply lami
nated. The plies are specially orthotropic, but the lamination can be unsymmetric. The axial load is
assumed to be harmonically time dependent, or constant as a special case. The governing nonlinear
partial differential equations are reduced to nonlinear ordinary differential equations in terms of
time by the Galerkin procedure. Then, an asymptotic method is used to solve the resulting nonlinear
ordinary differential equations. The numerical results for buckling loads are shown to compare very
well with those of three-dimensional theories in the literature, even for very thick shells. The effects
of lay-up and thickness on postbuckling equilibrium, nonlinear vibration and parametric resonance
are demonstrated by examples. «(') 1998 Elsevier Science Ltd.

1. INTRODUCTION

Buckling and postbuckling problems for cylindrical shells are usually tackled by thin-and
shallow shell theories, in which the radius of the shell is assumed to be much larger than its
thickness and than the wavelengths of the buckling wave. However, it was shown [e.g. by
Kardomateas (1995)], that such theories do not give good results for thick shells. This
conclusion applies to both shallow and non-shallow thin shell theories. For laminated
composite shells, the thickness/radius ratio is usually larger than that of metal ones.
Moreover, the lay-ups of loaded laminates may playa greater role for thick shells than for
thin ones. Therefore, there is a great need for thick shell theories for the analysis of axially
compressed laminated cylindrical shells.

The literature contains relatively few papers related to the problems addressed in this
paper. Recent such papers include the following. Bert and Birman (1988) gave a good
account of the dynamic stability of thick cylindrical shells under harmonically time depen
dent axial compression. Anastasiadis et al. (1994), and Tabiei and Simitses (1994), used
nonlinear thick-shell kinematic relations together with a high-order displacement mode to
develop a set of governing equations for buckling problems of thick shells, then solved
them for special cases individually. Xavier et al. (1995) dealt with the buckling and vibration
problems of thick shells by using a layerwise theory and a high-order displacement mode.
Finally, Kardomateas (1995), and Ye and Soldatos (1995), presented three-dimensional
analyses for buckling problems of orthotropic and cross-ply thick shells.

Compared with the papers cited above, the main features of the present study include
the following: (I) the dynamic case with harmonically time dependent axial compression
is considered, so that nonlinear vibration and parametric resonance are covered; (2)

t Currently visiting research professor, Division of Structural Engineering, The University of Wales Cardiff.
t Author to whom correspondence should be addressed.

2151



2152 R. Mao and F. W. Williams

nonlinear analysis is used so that initial postbuckling parameters, nonlinear frequencies
and parametric resonance curves can be found; (3) a non-shallow thick shell theory is used,
so that the analysis can give quite accurate results for very thick shells and is even good
enough for thick cylinders buckling or vibrating as columns; (4) the inertia and nonlinear
terms related to the circumferential displacement v are included in the kinetic equations, so
that the final equations involve both circumferential and normal displacements, v and w,
which appreciably improves the accuracy.

2. THEORY

A cylindrical coordinate system (p, e, x) is used for the analysis, where p is the length
coordinate in the radial direction, 8 is the angular coordinate in circumferential direction,
and x is the length coordinate in the axial direction. Whenever convenient, another right
hand coordinate system (x, y, z) is also used, where y = R8, z = p - R, and R is the radius
of the shell.

The displacement field of the first-order shear-deformation theory assumes that

u< = u+zl/J, Ul ' = v+z¢, uz = IV (I)

where {un U" uz } is the displacement vector in the (x, y, z)-coordinate system at any point
in the shell wall. The strains at this point can be expressed as

R (au!' U")' 1 (R)2 [(au, Uy )2 (au<)2J8,=- -+- +~ -- --- +- -
y p ay R 2 p ay R ay

Yxy = !!. ouC'. +- ~~2. +- !!. ~u~ (au, _ ~:)
p Dy ex p ox ay R

(2a)

(2b)

(2c)

(2d)

(2e)

These expressions are the same as those used by Stein (1986), but with some simplification
based on the assumption of small strains which gives

aux-« 1ax
R(auy u_)

and p ay + R «1. (3)

Substituting eqn (1) into eqns (2a--e) to eliminate Un U , and u" and making the additional
assumption that all nonlinear terms related to u, l/J and ¢ should be neglected gives

au 1 (av)2 I (aw)2 al/J
8 =-+-- -- +- - +z--.\ ax 2 ax 2 ax ax (4a)

(4b)

(4c)
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ow
)lxz = -0 +lj;x

R (DW U ))lvz = - ~:;-- - ~R- +¢ ., p uy

2153

(4d)

(4e)

Based on the kinematic eqns (4a--e), application of the principle of virtual work yields
the equations of equilibrium

oTyy oTy Qy 0 ( ou) T~(OW u) Tn ow-+--+-+- T,- +~ --- +_o +q, = 0ox oy R ox "ox R oy R R ox J

oMx oMv)
-+-'--Q,+m,=Oox oy

oMn eM,--" + -- -Q,+m, = 0
ex oy , ,

and the natural boundary conditions

[(T, ~.~ + TYJ)bv]l: = 0

[ ( T, ~: + T rx (~:: - ~)+ Qx) bw]I: = 0

(M'Yb¢)I~ = 0

[( (
OW v) ow ) JI 2

nT~ oy - R + Tv, a-; + Qy bw (I = 0

(M"blj;)16 n
= 0

(Mv b¢)16 n = 0

(5a)

(5b)

(5c)

(5d)

(5e)

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

(6g)

(6h)

(6i)

(6j)

where (q" qy, qz) and (m" my) are external loads (including inertia forces) per unit area of
the middle surface, and the stress resultants are defined by
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f
PM = (J --zdzx xR (7a)

(7b)

T" = fT'J~dZ, MH= fTn~ZdZ, T,y = fTHdZ, M yx = frxyZdZ (7c)

f
p

Qx = r,zR dz , Q,. = frl',dZ (7d)

where the integrals are over the whole thickness. Here these stress resultants are defined
differently from Stein (1986), in order to retain the usual meanings of the stress resultants
and the conventional forms of the kinetic equations. For example, M x in eqn (7a) represents
the moment, per unit length of y, produced by the stress (Jx about the junction line of the
cross-section with the middle surface. The equations of equilibrium in terms of these stress
resultants are very similar to those for thin shells.

In the present case there is no external load except for the inertia forces. Furthermore,
it is assumed that the inertias related to u, !/J and ¢ can be neglected and that, for an axially
compressed shell, the nonlinear terms related to T~ and Tn in eqns (5b-c) can also be
neglected. With these assumptions, eqns (5a--e) reduce to their final form:

aT, oTyx----+-=0
ox oy

oQ, aQ,_ T, 02 W ..
---- +-.,-- -- ~ + T,~---; = IiW
ox (;y R a:c

(Sa)

(8b)

(Sc)

(8d)

(8e)

where Ii is the mass per unit area of the middle surface and the dots denote differentiation
with respect to time.

The shell wall is assumed to be cross-ply laminated and the constitutive equations of
each ply can be written in the matrix form.

(9)

(10)

substitution of eqns (9) and (10) into (7a--e) yields
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_ (au _) av _ 01// a¢
T v,=A66 'l+cxy +A66-;--+B66~-+B66-;;-

vy vx vy ox

_ (au _) av _ at/J D¢
M n = B 66 -=:-. +En' +B66 -;-- +D 66 -;-- +D 66 -~-

. oy' uX uy ox

"(OW )Qx = A 55 -;;- +t/J
ex

_ (OW v )
Qy = A 44 oy - R+¢

where, with i and j each taking the appropriate one of the numbers I, 2, 4, 5 and 6

_=! [('OV)2 (OW)2J _ ==~ (~~! _~)2 _= ow (OW _~)
Cx 2 "l + "l ,C,_ 2 ~ R' CH "l "l RyX vX . oy . uX uy
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(lla)

(lIb)

(1Ic)

( lId)

(lie)

(II£)

(II g)

(1Ih)

(II i)

(llj)

(12a)

(12b)

(l2c)

(l2d)

and the integrals are over the whole thickness. From eqns (l2a-d) it can be seen that, in
addition to the usual stiffnesses Aij, Bij and Dij, the new stiffnesses, Au' Bu' _.. , 15;j, have
been introduced for thick shells. They can be called modified stiffnesses. The following
equations are used to calculate them.
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~ 2~ k( I 1)A=R L.. Q -~----
II k~ 1 Ij R+zk R+zk + I

where n is the total number of the layers of the laminate, Q~i are the material constants of
the kth layer, and Zk is the thickness of the kth layer. During this computation, a so-called
transverse shear correction factor, 5/6, should be introduced into the transverse shear
stiffnesses. Equations (8a--e) and (lla-j) constitute the governing equations for this paper.

3. REDUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

If the stress resultants of eqns (II a-j) are used, eqns (8a-e) can be expressed in terms
of the five unknowns, u, v, w, l/t and ¢, but these are inconvenient when solving and so they
will be replaced by alternative unknown functions as now described. For simplicity, atten
tion is confined to simply-supported boundary conditions at the two ends, i.e.

T,(O,y) = TJL,y) = --pet) = --(Po+P,cosft)

M,(O,y) = MAL,y) = °
v(O, y)= veL, y) = °
w(O,y) ,= w(L,y) = °
¢(O,y) = ¢(L,y) = °

(13a)

(13b)

(l3c)

(I 3d)

(l3e)

where P(t) is the axial compression, and Po, P, and fare constants. It is obvious that these
boundary conditions satisfy the natural boundary conditions of eqns (6a--e). The other
conditions ofegns (6f-j) can easily be satisfied ifthe quantities appearing in these conditions
are assumed to be periodic in ewith a period 2n. The conditions of eqns (l3a--e) suggest
that T" M" v, wand ¢ may be a better set of basic unknowns. By using eqns (lla) and
(II f), the displacement u and the rotation l/t can be expressed in terms of these basic
unknowns as

(l4a)

(l4b)

where the Cif are constants derived from the physical constants A 12 , etc, appearing in eqns
(1Ia) and (l1f).

In order to solve for the basic unknowns, it is assumed in eqns (8a--e) that

N

T, = L: T",n(t)sincx",xcosne-P(t)
m.n= 1

N

Mx = L: HmnU) sincxmxcosne
nl.n=, l

v = Vet) sincxpxsinqe

w = W(t) sin cxpx cos qe

¢ = <D(t) sin cxpx sin qe

(l5a)

(15b)

(l5c)

(l5d)

(15e)

where the T",m H",m V, W and <I> are to be solved for and CX i = in/L for i = m or p. The
functions of eqos (l5a--e) obviously satisfy eqns (l3a-~). Substituting eqos (lla-j), (14a,



Nonlinear analysis of thick cylindrical shells 2157

b) and (15a--e) into eqns (8a) and (8d) and then executing the Galerkin procedure gives,
for i, j = 1, 2, ... , N,

where

x:; = [A 66 0:;/J1- (A66c13 + B66C23)f3~]bipr5jq

X:j = - (A66 c 13 +B66C23) ~ r5 jp r5jq

f3 2

Y11' - (A- B-') 2 f32 rc ", (A-' B- ) q r' ~
ij - 66 Cl5 + 66(25.O:p q\'i.2pUj.2q+ 66(16 + 66 C26 R1\,i.2,?Ui.2q

h- ., - - .,""
X;J = [B66 0:p-- (B66 C13 +D66C2Jf3~ --A551'23]f3qr5ipr5lq

X~i" = - [(B66 c 13 +1566cdf3~ /R +A55 (0:; +1'23/R)]r5,Aq

X7/' = [D 66 0:; -. (B66 1' 14 +1566 ('24 )f3~ -- ,155 C24]f3qr5;p bjq

Yhl' _ [(B- D- )f32 AA . /4] 2 YC 5;
ij - 66('15 + 661'25 q+ 55(25 O:p~i.2I'Ui.2q

Here, bii is the Kronecker delta and

2i[l- (_I)i+i]

'1il = (? -/)77;

Ci = ('1;0 -'1iJ/2, C~ = ('1;0 +'1,)/2.

The steps starting beneath eqn (l5e) can be repeated for eqn (8e) to obtain

where

(17)
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C I = [(B I2 +B66 )C JJ +(D I2 +D66 )C2dPq

Ch = [(B J2 +B66 )C I2+(D J2 +D66 )Cn]Pq

A 2 - 2 -
C/, = B66 CXp + [B22 - (B J2 +B66 )C J3 - (D 12 +D66 )C23]Pq - A 44 /R

Cw = {[11n - (B 12 +B66 )C13 - (D 12 +D 66 )C23]/R - A 44 }Pq

The unknown function <I> in eqns (16a, b) can be eliminated by using eqn (17) to obtain

a;~ 1 Tij +a// Hi! +a/I3 V +a// W + Y;j' V 2+ Y;; VW+ Y;j' W 2
= 0

a~ I Tij + a~/Hij +a~/ V+ a~4 W + YV V2+ Y7; VW+ Y7t w2= 0 i,j = I, 2, ... , N
where

II -Z"+ SXI 1>aij - ;1 C ij,
l'

all = Zlh + Ch X '1>
I} I} C1> II

24 = XIM+ C"Xh1>a,} I} C if'
¢

The solution of these linear equations for Ti; and H ij for each pair of (i,j), for i, j = I, 2,
... , N, gives

(l8a)

(l8b)

where the coefficients b;jl, ... ,b?/ can be determined from a//, ... ,a?,4 and Y:j, ... , Y~'r.

Application of the Galerkin procedure to eqns (8b, c) yields

I A

d;'Tpq +di: Hpq +d;: V+ (d:; -CI.;P) W+d:;<I> + lcx; W L Tmn C,.2/)n.2q + illY = 0 (19b)
m,n=l

where

• A 2 -'. 2 - 0

d:, = A 66 cxP + [An - (A 12 +A 66 )cl J - (B J2 +B66 )C23]Pq+A 44 /R-

d:: = [An + --4'44 - (A 12 + A 66 )C13 - (B 12 +B66 )C23JPq/R

... 2 - . ., -
d~ = B66 (Xp + [Bn - (A 12 +A 66 )C14 - (B 12 +B66 )c24J/J; - A 44 /R

- . "" - 2 ... 'jd:; = [(An -A I2 C!, -BI2(23)/R+A,sC23]/R+A44Pq +A "cxi;

d:;' = [(B22 -A'2C'4 -BJ2C24)/R+AssC24 --A441fJq
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After elimination of Tij and H u by using eqns (18a, b), eqns (19a, b) become

V·· [i"'bll ['Vh
21 d" C'd" 2 pJV [flhl2 i'I'b22 d' C"'d'] Wfl + 'pq +. h pq + I' + C; ep - rJ.p + I 1"1 + h pq + ". +c; <P
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+ [f~h;: +fi,h;4
1 -ell] V 2+ [f:'b;: +n;h/:: -eI2] VW+ [f:b;: +f"b;g] W 2

-eI3V3-eI4V2W-eISVW2 = 0 (20a)

W" [i'h'bll f· ...h21 d'" C
,
. dh'] V+ [f H'b I2 fH b22 d'" C"d" 2p JWfl + I 1"1 +. i< 'pq + ,+ (',p <P . , pq +. i< pq + ,,+ C~ <P - ,xI'

+ [f;'b;: +f;;h;4'] V 2 + [f;'b;: +.lJ: b;: +e ll ] VW+ [f;'b;; +f;;b;4' +ed W 2

+eI3V2W+eI4VW2+eISW' =0 (20b)

where

[ '" = d" + C" d"
. I, i< C <P'

ep

C
f '" = dW + -'d"

. I " C <P'
IP

c
i .w = d"'+ -~d"" " C </,.

,p

Equations (20a, b) are the final nonlinear ordinary differential equations in terms of Vand
W used in the present paper.

4. INITIAL POSTBUCKLING

Consider a general nonlinear dynamic system of the form

N N N

flU i + L [dljuj + (alj- 0:
2 P(t)b'/)uJ + I hi/ku,uk + L CljklUjUkUI = 0, i = 1,2, ... "N

j~l j,k~1 j,k.l~1

(21 )

where the u" i = I, 2, .. " N, are the generalized displacements, [a,J is a symmetric and
positive definite matrix, dljuj represents the equivalent viscous damping and the coefficients
fl, rJ., du' alj bljk and C"kl are all constants. It is obvious that eqns (20a, b) are a special case
of eqn (21) for N = 2 and du = O. Let the matrix [a i ;] have distinct eigenvalues

with eigenvectors

By introducing a new set of generalized displacements Wj such that

.v

U, = L x"w,
I~ I

eqn (21) can be transformed into

(22)
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(23)

(Note that Wm here and Vm below have no relation to the physical displacements wand v.)
Two special cases (i) and (ii) are now considered.
(i) Linear static equilibrium. In this case eqn (23) reduce to the system of equations

of equilibrium

(24)

where Po is the constant axial compression. From eqn (24) the buckling load can be obtained
as

which is used to define a dimensionless load Per(t) as

- P(t) Po P, __
Per(t) = p = p + pcosft = Po +P, cosft.

er cr cr

(ii) Linear free vibration. In this case eqn (23) becomes

,uWm+AmWm=O. m=I,2, ... ,N

which give the natural frequencies W m as

W~ = )'/1//,u.

The lowest natural frequency WI is used to define a dimensionless time ras

(25)

(26)

(27)

(28)

(29)

Introducing P(t), rand dimensionless generalized displacements Vrn = wm/T, where T
is the thickness, into eqn (23) gives

N N N

V~, +n~vm = v",P, coslr- L dmnv lI - L bmnsvnvs- L cmns,vIIV,Vt, m = 1,2, ... , N (30)
n= J n,s= I n,s,f'''' I

where the prime denotes the derivative with respect to rand n;;." drnn , bmns and Crnnst are the
dimensionless quantities

- f
f=~

WI
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The coefficients in eqn (30) playa major part in predicting and understanding post
buckling equilibrium and parametric resonance. For the postbuckling problem, the time
dependent terms in eqn (30) should be omitted, giving

m = 1,2, .. . ,N. (31 )

A state of equilibrium can be denoted by a point in the state space (Po, Vh V2, ... ,vN) and if
buckling occurs the point is called a critical point. All postbuckling equilibrium points form
a curve called the postbuckling path. The tangent to the path at the critical point is referred
to as the initial postbuckling slope and is important for predicting and understanding
postbuckling behavior. As shown in the Appendix, the tangent is determined by the
coefficient bill in the following way

(
i'JPo apo GPo)-a '-a-'" .,,~i'J =(bI11,0, ... ,0)

VI V2 VN
(32)

which means that the buckling mode is in the (Po, vl)-plane and the initial postbuckling
slope is bill'

It is known that for most structures it is very possible to have b,jk = 0 for all i, j and k.
In such cases the second-order derivative rf po/av~ at the critical point (i.e. the curvature
of the postbuckling path there) is needed to describe the initial postbuckling behavior and
the Appendix shows that

(33)

Equations (32) and (33) form a complete description of the initial postbuckling behavior
of a system for which eqn (30) applies.

5. PARAMETRIC RESONANCE

A time dependent compression can cause a periodic flexural vibration if the excitation
frequency fis close to certain values, even for compressive loads far below the static critical
value, i.e. parametric resonance occurs and the structure loses its dynamic stability. Analysis
of parametric resonance involves determining the stability-instability boundaries in the
parametric space (or plane) and the amplitude-frequency curves. The asymptotic method
of Evan-Iwanowski (1976) is now used to solve the dynamic system of eqn (30) without
repeating his detailed derivations.

Let Fm (!, v, v') denote the right-hand side ofeqn (30), where v = (VI' V2, ... ,VN) Consider
the following equations, which are eqn (30) with a smaller parameter e

V;;,+n~JVm = eFm(t~:v,v'). m = 1,2, ... ,N. (34)

Once eqn (34) is solved, the solution to eqn (30) can be obtained by setting e = I. The
asymptotic method seeks solutions to eqn (34) in the form
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M

Vm = am(r) cos IjJ"Jr) + I c'VmJr, a, 1/1)
i= 1

M

a;"(,) = I c'Ami(r, a, 1/1)
i=" I

.11

1jJ;"(r) = !J.m+ I ciBmi(r, a, 1/1), m = 1,2, ... , N
i~= I

(35)

(36a)

(36b)

where r = cf is called slow time and a and 1/1 denote (a], a2, ... , aN) and (1jJ I, 1jJ2' ... ,1/1N),
respectively. The functions V m" An" and BIm can be determined by substituting eqns (35)
and (36a, b) into eqn (34), equating similar terms at the two sides of each equation and
eliminating secular terms. In the following, consideration is confined to the case of M = 1
in order to obtain a first-order asymptotic solution, so that after setting [; = I

Vm = am cosljJm + V", I , m = 1,2, .. . ,N (37)

where Vm, am, IjJm and Vml are all functions of t~ but tis not written explicitly in eqn (37)
and later on in this section for conciseness.

For simplicity, the first of eqn (30) is taken as a sample. The coefficients A II, B II and
VII for the first-order solution of VI can be obtained from the coefficients of eqn (30) by
using eqns (2.23) and (2.24) of Evan-Iwanowski (1976) to give

(38a)

- ~ ". baa [~5?S(IjJL~.~~+ __!.'os0l!j-.fl__.J
") i...J l/k } A J ') "I ..,

~I.k Qi--(Qj+!J.d- !J.i-(!J.j-Qd-

- ~ L Cjjk/ajaka/ [ __~OS(~ij-ljJk +1jJ!L"2 + _~~'1ljJj+ljJk_:::_}/) 2

4 jki !J.i-(!J.j+Qk+ Q/) !J.i-(Qj+!J.k-Qr)

+ _~5!.s(IjJI-ljJk+IjJL:; + ~OS(ljJj-ljJk-~I/)oJ
Qi-(Qj-!J.k+Q/)" ni-(!J.j-!J.k-!J./)-

(38c)

where the subscripts j, k and I in the summations cover 1 through N except those which
would cause a denominator to be identical to zero. Substitution of eqns (38a, b) into eqns
(36a, b) with M = 1 and c = 1 yields

(39a,b)

Equation (39a) can be solved independently for at to give

(40)

where alO is a constant determined by the initial conditions. Equation (39b) is coupled with
the vibrations of other generalized displacements and can be solved together with equations
similar to egns (39a, b) for a2, a" ... ,0", without any difficulty.
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Evan-Iwanowski (1976) proved that in the non-resonance case VII is negligible com
pared to Gj cos 1/11' Therefore, it is now omitted to give

(41 )

which is called the zeroth-order solution.
The excitation Pr does not appear in eqn (41) because it contributed only to the small

term VII' Therefore, eqn (41) also forms a zeroth-order solution for nonlinear free vibration
of a cylindrical shell under constant axial compression, the normalized nonlinear frequency
F 1 being given by eqns (38b) and (39b) as

which can be considered to be a generalization of the formula given by Atluri (1972).
The solution, given as eqn (41), represents a decaying process for any initial conditions,

so that any disturbances to the shell which serve as initial conditions will die out expo
nentially. Thus, eqn (41) is called a non-resonant solution. However, the non-resonant
solution is valid only when VII is small. If some of the denominators in the expression for
VI), see eqn (38c), are close to zero the non-resonant solution of eqn (41) breaks down and
the resonant case occurs.

For the resonant case, eqn (2.28) of Evan-Iwanowski (1976) gives the zeroth-order
solution as

where

P,al.
a'i = All - -21 sm24>1

I Pr
4>'1 = Q I -.2 +B II - 21cos 24>1

(43a)

(43b)

(43c)

For any initial conditions, the solution to eqns (43a-e) may converge, after a transient
process, either to the stationary trivial solution or to a stationary periodic solution. The
latter case means resonance, i.e. any disturbance to the shell will develop to a stationary
flexural vibration.

For (43a) to be a stationary solution, it is necessary that al(i) and 4>1(i) be constant,
I.e.

(44)

Thus, from eqns (43b, c) and (38a, b), with a2, a" ... , aN having died out because they are
not in resonance, it follows that

(45a, b)

The solution represented by eqn (45a) is the stationary trivial solution, and the solution
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given by eqns (43a) with (45b) represents the stationary periodic solution. Inspection of
eqn (45b) shows that the stationary periodic solution does not always exist, and that for
given Q" P, and (ll" there are three frequenciesj;,h andf, on thef-axis such that:

(a) For / ~ j; or!); .f" al is zero or imaginary, so that resonance does not occur and
the system is stable, i.e. any disturbance to the system will die out exponentially.

(b) For.f~ < / ~ lz, al has one non-zero real root so that one stationary periodic
solution exists and the system is unstable, i.e. any disturbance to the system will develop
into a stationary flexural vibration with amplitude equal to al'

(c) For 1: </<.1:., al has two non-zero real roots, and calculation shows that the
system is unstable for large disturbances, i.e. large disturbances will develop into a stationary
flexural vibration with its amplitude given by the larger root, whereas small disturbances
will die out exponentially. Therefore, this case is called conditionally stable.

The.i-;,lz and]; described above are points on the.f-axis for any fixed P, (and (lll, of
course). When Pr varies, the loci of these points form curves in the (PrJ)-plane, called
stability-instability boundaries. The discussions in this section are about the resonance in
the mode of VI Similar things can be done for the resonances in the modes of V2, V3, ... , VN

as well.

6. NUMERICAL RESULTS

First, the method presented is checked against results from three-dimensional analyses.
Figure I is for a rather thick cylindrical shell analyzed by Ye and Soldatos (1995), the data
for which is given in the caption, noting that the inner ply is the 0° one and that the
subscripts Land T denote the fiber direction and transverse direction, respectively. The
curves of Fig. I show very good agreement of the buckling loads obtained by the present
theory with the three-dimensional ones given by Ye and Soldatos (1995), especially for
large EdET .

Per
1.2,--------------

1

0.8

0.6
Present theory

Fig. 7 of Ye and Soldatos (1995)

5040

___.L-~ --l____1.--

2010 30

EL lET
Fig. l. Comparison of P" with the 3-D analysis ofYe and Soldatos (1995) as ELIET varies. The
cylinder properties are RIT= 5. LlR = 5 and [0"/90"] cross-ply with GLTIET = 0.6 and

I'll = I'H = 0.25.
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0.6

0.4

0.2
1 Present solution
2 3-D Solution
3 Donnell theory
4 Timoshenko theory

1.41.31.1 1.2

R2 /R 1

Fig. 2. Comparison of P" with the three sets of results of Kardomateas (1995) as R2!R, varies.
The cylinder is orthotropic with L/R2 = 5, v'" = 0.277 and. in GPa, E22 = 57, E" = E" = 14,

G21 = G" = 5.7 and G)\ = 5.0.

o '--- --1...- -----.1-.-

1

Figure 2 compares with the results of Table I in Kardomateas (1995), for which R I is
the inner radius, R2 is the outer radius and the subscripts 1, 2 and 3 denote the axial,
circumferential and radial directions, respectively. The curves of Fig. 2 show that the results
of the present theory are closer to those of the three-dimensional analysis of Kardomateas
than are the two thin shell theories he presented, especially for thick shells.

Another numerical example is the shell analyzed by Sun (1991) based on Donnell's
thin-shell theory. This is an infinitely long thin cylinder with RIT = 165. Its wall is a
(90 0 loe lOa190°) laminate with ply properties VLT = 0.26 and, in GPa, EL = 141, ET = 9.7
and GLT = 4.1. Sun (1991) used radial deflection wand stress function F as the basic
unknowns for the analysis and assumed that they have the same buckling mode. Hence, he
obtained the buckling load and initial postbuckling parameter as being dependent only on
the axial and circumferential lengths of the buckling wave, regardless of the actual length
of the shell, their values being Pcr = 1.32 and el111 = 0.079. In the present theory, the
unknown stress resultants are expanded into series, so that the parameter ell11 varies with
the length of the shell while the critical load Pcr does not. Computation shows that, for
large enough LIR, the axial and circumferential lengths of the buckling wave are almost
fixed, and thus the buckling load is almost fully converged to Pcr = 1.34. This value is quite
close to Sun's given above because for such a thin shell Sun's Donnell shallow shell analysis
is good enough within the linear sphere. However, the parameter e"l, given by the present
theory is no longer constant, but varies from 0.060 to 0.475 as LIR increases from 0.2083
(axial wavelength) to 20. From this example it can be concluded that the nonlinear behavior,
i.e. post-critical behavior, is more sensitive to the accuracy of the theory used for analysis
than is the linear behavior, i.e. determination of critical loads, giving more room for
refinement of its analysis.

For laminated shells, the lay-up detail of the laminate may have an appreciable
influence on the buckling load and on the postbuckling behavior, especially when the wall
is thick. Figure 3 is for the shell discussed in Table 2 of Iu and Chia (1988) with their SS3
type simply-supported boundary conditions. The data for the shell is given in the figure
caption and the curves show that the [90o /(fj lay-up gives larger buckling loads than does
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Per
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1.4

1: [0/90]

1.2 2: [90/0]

.;+- Donnell theory for [0/90] by lu and Chia (1988)

210180150120906030

1 '--__----.1-- -'--__---1-. -'-

o
R/T

Fig. 3. Comparison of Poe for [0'/90'] and [90' /0'] laminates as R/T varies. The cylinder properties
are L/R = 0.5, EL/ET = 40. GLT/ET = 0.5 and VLT = 0.25.

the [0 0 /90'] lay-up. This is because the [90/0°] shell has the 0" layer at its outer surface
and, therefore, has more fibers in the important axial direction than does the [0°/90°] shelL

Figure 4 gives the parameter ['1111 for the shell of Fig. 3, again with R/T varying. The
curves in Fig. 4 show sudden changes in e1 111' which are due to the changes in the number,

21018015090 120

R/T
6030

o '-- -'-- -'--__---L

o

<51111

0.2 ,-------------

0.08

1: [0/901
0.16 2: [90/0]

0.12

0.04

Fig. 4. Comparison of 1""" for [0°/90°] and [90 0 /0 0
] laminates as R/T varies. The cylinder properties

are L/R = 0.5. E,jET = 40. GLT/ET = 0.5 and VI:r ,= 0.25.
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p, of axial half waves of the buckling mode. It can be seen that the difference in ellil between
the [0°/90°] and [90)/0"] cases is quite substantial for thick shells, and again the [90"/0"]
case gives the better performance.

Figure 5 compares stability-instability boundaries given by the present method with
those of Bert and Birman (1988) for a cross-ply shell with the properties given in its caption.
The load was

pet) = PI cos It

and there was no damping. The wave numbers (p, q) of the mode of resonance were fixed
at the values (1,5) used by Bert and Birman. The lines AB and AC are the boundary of the
main instability region given by the present theory. The area between them is the instability
region, the region above AB is conditionally stable and that below AC is stable. The lines
A'B' and A'C' are the corresponding boundaries taken from Table 3 of Bert and Birman.
The difference between the boundaries BAC and B'A'C' may be partially attributed to the
fact that the present theory includes the nonlinear term and the force of inertia associated
with the circumferential displacement v. which tends to reduce the natural frequency.
Another possible reason for this difference is that Bert and Birman used constitutive
equations without the tension-bending coupling which may have an appreciable effect on
the results for a [0'/90"] wall, especially when the wall is thick.

Figure 5 is for the [0"/90 U
] case. The corresponding stability-instability boundaries AB

and AC for the [90' /0"] case in terms of the dimensionless load P, and frequency I are
identical to those of Fig. 5.

If the load parameters and damping coefficients are changed, the boundaries will
change their shape and position, as shown in Fig. 6. Here, the thin lines are the boundaries
AB and AC in Fig. 5, which correspond to Po == 0 and d11 = O. Changing Po from zero to
0.5 gives boundaries AB and AC as shown, whereas retaining Po ,= 0 and increasing d11

from zero to 0.05 gives the boundaries DE, DF and DG. The region between DE and DF is

0.8

c

B
C'

0.6

B'~]
\Ber, and Birman (1988)

/

\
Present theory

/
/

0.2 0.4

Excitation amplitude Pt
Fig. 5. Stability-instability boundaries of a [0"/9(n cross-ply cylindrical shell with R(T = 5, LR = I,
EUiET = 40. GLT/Er = 0.6. GTT/ET = 0.5, VLT ,= 0.25, damping ~l = 0, constant load contribution

Po = 0 and wave numbers (P. q) = (1. 5).
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-------------,

E

B

Thin lines: 150 -0, d,,-O
BAC: 150 -0.5, C:L ,-0
EDF and DG: Po -0, do -0.05

c0.8 L- ---'- _

o 0.2 0.4 0.6 0.8

Excitation amplitude Pt
Fig. 6. Stabl1ity-instability boundaries for [0(90 ] cross-ply, cylindrical shell with R(T = 5, LjR = 1,

ELjET = 40, GLT/ET = 0.6, GTTjET = 0.5 and Vu = 0.25.

unstable, the region between DG and DE is conditionally stable, and the remaining region
is stable.

Figure 7 shows resonance curves for the shell discussed in Fig. 5, with the load
and damping such that Po = 0.2, P, = 0.1 and d) I ,= 0.05 and with the wave numbers
(p, q) = (1,2), which correspond to the lowest eigenfrequency. Curves 1 and 2 of Fig 7 both
have two branches. The upper branch corresponds to the larger root of eqn (45b) and the
lower branch corresponds to the smaller root. The intersections of the upper and lower
branches with thefaxis are at}; and];, respectively, and the abscissa at the intersection of
the two branches ish, where~,];andj~ have the significance discussed at the end of Section
5 above. Comparison of the curves shows that the [90C 10") lay-up is better than [0'190°) one
at reducing the amplitude of resonance.

Figure 8 demonstrates the variation of the nonlinear frequency vs amplitude curve for
the shell of Fig. 1 as its length and lay-up are varied. The dimensionless frequency
F) ( = tjJ'dQ]) is that of eqn (42). When LIR= 5.0, F) = 0 for both of the [0°/90°) and
[90"10°) cases, which means that no nonlinear effect can be observed for these cases. In fact,
the basic mode of vibration of such a long shell is p = q = I, i.e. the shell vibrates as a
column and it is well known that the nonlinear effect for a column is very small. For shorter
shells, the basic modes were p = I, q = 2, IVIII WI = 0.533 for LIR = 1; and p = I, q = 3,
IVIII WI = 0.386 for LIR = 0.5. Substantial nonlinear effects on the frequency are observed
from Fig. 8.

7. CONCLUSIONS

In the present paper a non-shallow thick shell theory is used to analyze unsymmetrically
laminated cross-ply cylindrical shells under time dependent axial compression. Buckling
loads, initial postbuckling parameters, nonlinear frequencies, stability-instability bound
aries and amplitude-frequency curves, with their dependences on shell and load properties,
are obtained for some numerical examples. Comparison with three-dimensional results
shows good accuracy of the present theory even for very thick shells. The theory is also
very good for linear and nonlinear analysis of long thick cylindrical tubes which buckle or
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Fig, 7, Resonance curves for the basic mode (p, q) = (I, 2) of a [0°/90'] or [90'(0'] cross-ply
cylindrical shell with RIT = 5, LIR = I, ELlEr = 40, GuiEr = 0,6, GTTIET = 0,5 and VLr =, 0,25,
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"
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vibrate as columns. Numerical examples also show the effect of the lay-up details on the
critical and post-critical behaviors for thick unsymmetrically laminated shells.
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APPENDIX

The derivation given below is mainly based on Rik (1979). Consider an equilibrium governed by the eqns

with the condition

./",(P",v) = O. m = 1,2, . . ,N (A I)

(A2)

where v denotes (v" v" ... ,VN)' and/~,." = (!fm/vv", Equation (A I) determines the path of equilibrium in the (N + 1)
dimensional space S composed of P" and v. The theorem of existence of implicit functions states that if

det If",,(Po, v)1 # 0 (A3)

at a point in space S, then eqn (A I) uniquely determines the v" (n =~ 1,2, ... , N) as single-valued functions of Po
in a neighborhood of that point. A point where

det If"." (Po, v)1 = 0 (A4)

is then called a point of singularity. A point of singularity may be a turning point (limit point), where the tangent
to the path of equilibrium is perpendicular to the direction of Po, or a bifurcation point, where the path bifurcates
and has more than one tangent. The bifurcation is of the most interest.

For eqn (31), the point P" = I on the Po-axis is a bifurcation, called the critical point, where the path
bifurcates into two branches. One is the fundamental path with all I'm = 0 and the other is the postbuckling path.
The slope and the curvature of the postbuckling path at the critical point are to be calculated from the coefficients
ofeqn (31).

Differentiating eqn (AI) with respect to the length.l' of the posbuckling path gives

d ,_ at;" dPo ~,dv,
-d /",(P",v) = -;;P--=---d + L),""-d

S (7 0 S i= I S

d' ,_ a''/;n dP" <i/;" d' P" ,"- (af~oJ dv, . d2 v,)
---;!",(P",v) = 0 'JP- -d' +op- -----:;-+2: -'J--d +/",)--- =0, m=I,2, .... N
ds- (,.1' ( 0 .\ C" ds' ,_ I CS .I' ds 2

(A5)

(A6)

which are valid at all points on the postbuckling path. Let (dP,,/ds, dv/ds)" and (dPo/d.l', dv/dsJz, be the tangential
vectors to the fundamental path and the postbuckling path, respectively, at the bifurcation, and v· be the buckling
mode. Rik (1979) shows that there is a linear relation between the tangential vectors and the buckling mode.
which can be written in the form



Nonlinear analysis of thick cylindrical shells

(dPo) _ rt/I (dPo)
ds :, - ds 1

(~) ~ tx(fJ (~!) +v*)
ds 2 ds 1

and proves that

(

N (dV) )~-0~5
(l = fJ' + 2f3 i~1 v~ d.:, 1 + 1 ~

For eqn (31)

(p~, v') = (I, 0" .. ,0), v' = (I, 0... ., 0), ((d~o}, (~)J =(1,0, .. , ,0)

and, therefore
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(A7)

(A8)

(A9)

(AIO)

(All)

fI -~-b-- 2 - lib

I I
(l=----=---

,,/1+fI' jl+E~
(AI2)

From eqn (A 13) the initial postbuckling slope can be obtained as

(A13)

(AI4)

For most structures, It is very possible to have bu' = 0 for all i, j and k, so that the second-order derivatives
are needed. These can be obtained from eqn (A6) under the condition of normalization

(dPo)' .V (dV i )"- +2:-- =1.
ds ,,, I ds

Equation (A 15) can be differentiated to give

dP d'P N dv d'v
_0 __0 + 2: -~--'- = O.
ds ds' ,-1 ds ds'

Combination of eqns (AD), (AI6) and the condition bilk = 0 gives

d'",
--=0.
ds'

Then eqn (A6) yields

d' Po _
-~-=6('llll

ds'

d'v
-' = 0, i = 2,3, ... ,N.
ds'

By making use of eqns (A 13) and (A 17) it can be shown that

d' Po iJ' Po
-~----

Hence eqn (A 18) yields

i)' P"
--. = 6e I I II .

iJvi

(AI5)

(AI6)

(AI7)

(AI8)

(AI9)

(A20)

(A21)


